Evaluation of T Cell Products – LMP-specific T cell therapies for Lymphoma

CM Bollard

The Long Winding Road to Successful T cell Therapy

- Tumor specific T cells in the clinic (CAR modified)
- Priming naïve T cells in vitro
- Low volume GMP grade culture systems
- Improved APC generation
- Incorporating CD4 and CD8 responder
- Proof of principle Virus specific T cells
- Leukemia-specific T cells
- Multi-virus specific T cells in the clinic
- Improved growth conditions – rapid manufacture
- Target antigen identification

2000

1995
Bench to Bedside

Can CTLs be used to treat "real" malignancies that occur in normal individuals?

Rationale of Immunotherapy for EBV-positive Lymphoma

- Significant failure rate of therapy for advanced stage or recurrent disease
- Long-term side effects of chemotherapy and radiation
- EBV antigens expressed by up to 40% of lymphomas are potential targets for T cell immunotherapy
Types of EBV Latency

Type 3
EBV lymphoma post transplant
Lymphoblastoid cell lines (LCL)

Type 2
Hodgkin’s disease
Nasopharyngeal carcinoma

Type 1
Burkitt’s lymphoma

EBV Specific Cytotoxic T Lymphocytes (CTL)
Control EBV Infection in vivo

EBV Infected B cells

PBMC

EBV +ve Lymphoma Cell

Inhibitory factors
EBV specific T cell Generation

Step 1: LCL generation
- EBV-infected B cells (LCL)
- 4-6 weeks

Step 2: CTL expansion
- EBV-infected B cells (LCL)
- IL-2
- PBMC
- 4-7 weeks

Step 3: QA/QC
- Sterility
- HLA type
- Phenotype
- Cytotoxicity

EBV Specific CTL in EBV+ve Hodgkin Lymphoma

- Gene Marked T-cells persisted for 12 months max
- EBV-CTL lines showed small populations of T cells reactive against LMP2
- Some expansion of LMP2-specific T cells in PB post infusion.
- Anti-tumor effects seen (20% CR/PR)

Marked CTL by *in situ* PCR at tumor site

Bollard et al, J Exp Med 2004
Straathof et al, J Immunol 2005
Bench to Bedside

How can we improve and expand tumor specific T cells?

- EBV+ Lymphomas post BMT
- EBV+ Hodgkin’s disease

LMP1 and LMP2A-specific CTL For Hodgkin and non-Hodgkin Lymphoma

- LMP1 and LMP2A are potential CTL targets

Hodgkin R-S Cell/NHL Cell
Making LMP1 and LMP2 Immunodominant Antigens

Adherent PBMC
GM-CSF
IL-4
IL-1b
IL-6
TNF-a
PGE-2

PBMC

More recently Substituting pepmixes for ad vectors

LMP-specific Cytotoxic T Lymphocytes (CTL)

Bollard et al, JIT 2004, Straathof et al, JI 2005

Phenotype of Autologous LMP-CTL Lines Expanded from Lymphoma Patients

- 45%+/−15% CD45RA- 62L-
- 34%+/− 5% CD45RA- 62L+

% 0 20 40 60 80 100 120

CD19 CD3 TCRαβ TCRγδ CD4 CD8 CD3+ CD56+ CD56+CD3neg CD16+ CD3neg
LMP1 & LMP2–Specific Activity in LMP-CTL from a Patient with Hodgkin Lymphoma

![Graph showing specific activity and lysis percentages for different LMP targets and LMP-specific tetramers.]

LMP2-specific Cytotoxic T Lymphocytes (CTL) are CD4+ and CD8+

![Bar graph showing specific cell lysis and stimulation with different targets and LMP-specific tetramers.]

CD8+ T cells
CD4+ T cells
Broad LMP2-specific Activity Present in CTL line

Overlapping peptide pool number

HLA type: A2;29/B7;15(62)
A2 = FLYALALLL (4+5+20)
A2 CLG
A29 = ILLARLFY (4+20)

Broad LMP1-specific Activity Present in CTL line

Overlapping peptide pool number

HLA type: A2;29/B7;15(62)
Autologous LMP2-CTL product (n=17)
OR LMP1 and LMP2 CTL product (n=33)

- Dose escalation
 - Level 1: 4x10^7/m^2,
 - Level 2: 1.2x10^8/m^2
 - Level 3: 3x10^8/m^2

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>LMP2 CTLs</th>
<th>LMP1/2 CTLs</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hodgkin’s Lymphoma</td>
<td>9</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>NK/T lymphoma</td>
<td>3</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Diffuse large B cell lymphoma</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>PTLD (lung, kidney, liver)</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>32</td>
<td>50</td>
</tr>
</tbody>
</table>

Age range 8-79 years
Immune Reconstitution of LMP1 and LMP2-specific T cells in Patients Treated with LMP1/2-CTL

No difference between DL1 and DL3 patients

LMP2-tetramer Positive CTL Detected in LN

Supraclavicular Lymph Node

Peripheral Blood
Rise in LMP-specific T cells Post Infusion and Accumulation in Lymph Node

Clinical Responses post LMP-CTL
Clinical Responses post LMP-CTL

Relapsed Disease Arm (n=21)

- **No toxicity**
- **11 CR (1 also given Rituximab)** (includes 1PR→CR)
- **2 very good partial responses** (up to 36 mths)
- **8 progressive disease (2-8 wks)**

Median clinical response: 1.5y
(range: >6 to >40 mths)

Patients with disease at CTL infusion

- **n = 21**

Clinical Responses post LMP-CTL in Patients with Active Disease

60% Disease Free Survival at 2 years

- **n = 21**

Graphical representations showing clinical responses and survival rates
Clinical Responses post LMP-CTL- As Adjuvant Therapy

Adjuvant Therapy
n=29
- No toxicity
- 14 patients post BMT
- 15 post chemo alone
- 1 died of cardiac disease (at <8wks)
- 27 remain in remission
 - 1 relapsed 8 wks post CT
 - CR median of 2.5 years

Patients high risk for relapse at CTL infusion

Relapse

Remain in remission

Progression Free Survival Probability in LMP2-CTL vs LMP1/2-CTL groups

Patients who received CTL as Adjuvant Therapy

P=0.741
Patients who received T cells as Treatment

Patients who received T cells as Adjuvant Therapy

Cause of death specific probability: All subjects

Deaths from Other Causes

In adjuvant Group 8/26 patients died

1 relapsed, died in CR after allo SCT
3 second cancers (2 MDS, 1 Sarcoma)
3 infection
1 cardiac disease

Confirms need for targeted therapies
Conclusions-LMP1/2 data

- No toxicity – especially when used as adjuvant therapy
- Accumulation of LMP-CTL at disease sites
- Anti-tumor effects seen (13/21 patients PR/CR)
- And what about the patients who relapse??

Immune Evasion Strategies in Hodgkin’s Lymphoma - Do CTL have a chance?
Bench to Bedside

Can Tumor-specific CTL Be Genetically Modified to Become Resistant to Inhibitory Effects of Lymphoma Cells?

TGFβ Effects on CTL

- Inhibits CTL proliferation
- Inhibits cytotoxicity
 - ↓ perforin
- Inhibits cytokine production
 - ↓ IFN γ
Creating a Mutant TGFβ Receptor II

Wild type Receptor → Truncated TGFβ Receptor II (DNR) → Dominant Negative Receptor

Transmembrane domain

Stop codon 597

Retroviral vector SFG

SFG:DNR

MoMLV

U3 R U5

NcoI/BamHI

SD PBSQ SA

DNR

Bollard et al, Blood 2002

Rendering LMP-specific T cells Resistant to TGFβ

Ad5f35 LMP1-I-LMP2

EBV-LCL

DC

PBMC

IL-2

DNR-transduced LMP CTLs

CD4 and CD8 T cells are DNR-transduced

DNR-transduced CD4 and CD8 T cells are Predominantly Effector Memory

n=6 CTL lines
DNR-Transduced CTL are LMP-specific

![Graph showing IFNγ release SFC per 1x10^6 cells](chart1.png)

DNR-Transduced LMP-CTL are Functional *in vitro*

![Graph showing CTL proliferation](chart2.png)
Patients Studied

- 5 females and 1 male
- EBV+ HL
 - 5 – relapsed post autologous SCT
 - 1 – relapsed post allogeneic SCT
- Two previously treated with LMP-CTL alone
- All refused additional chemotherapy

DNR-transduced T-cells Persist in vivo for 5-23 months
DNR-transduced T-cells Persist \textit{in vivo} for 5-23 months

Patient 4

Pre-infusion

Patient 5 – Partial Response

Pre

Post
Patient 2 – Complete Response

PRE CR 8 wk

Response durable for over 34mths

![Graph showing copy numbers in 10^3 ng DNA](image)

Patient 1 – Mixed Response to CR

Patient 1 – Mixed Response to CR

![Graph showing copy numbers in 10^3 ng DNA](image)

Residual Tumor Cells

LMP2neg Post CTL

Tumor Cells

LMP2pos PreCTL

EBV T-cells

DNR-trans T-cells

Anti-CD25 RIT

Mixed Response

CR
Patient 3 – Partial Response

LMP-specific CTL Accumulate in Tumor Sites

CD3 T-cells infiltrating tumor sites post CTL

Residual LMP2+ Tumor Cells Present post CTL

Tumor infiltrating T-cells are LMP-specific

SFC per 2x10^5 cells

Infused CTL line

Tumor infiltrating CTL

LMP1 peptide pools

Residual LMP2+ Tumor Cells Present post CTL
Clinical Outcomes after DNR-transduced LMP-CTL

<table>
<thead>
<tr>
<th>Pt ID</th>
<th>Age</th>
<th>Dose</th>
<th># Doses</th>
<th>Response post CTL</th>
<th>Duration of Response</th>
<th>CTL Persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>$2 \times 10^7/m^2$</td>
<td>2</td>
<td>Mixed response → CR</td>
<td>14 months</td>
<td>12 months</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>$2 \times 10^7/m^2$</td>
<td>2</td>
<td>Complete response</td>
<td>34 months+</td>
<td>2 months</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>$6 \times 10^7/m^2$</td>
<td>8</td>
<td>Partial response</td>
<td>18 months</td>
<td>23 months</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>$6 \times 10^7/m^2$</td>
<td>6</td>
<td>Stable Disease</td>
<td>12 months</td>
<td>18 months</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>$2 \times 10^7/m^2$</td>
<td>6</td>
<td>Very good PR</td>
<td>10 months +</td>
<td>10 months+</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>$6 \times 10^7/m^2$</td>
<td>4</td>
<td>Stable Disease</td>
<td>7 months</td>
<td>5 months</td>
</tr>
</tbody>
</table>

Conclusions

- No dose limiting toxicity
- TGFβ-resistant LMP-CTL may beneficial in EBV+ Lymphoma
- DNR-trans LMP-CTL persist up to 12 months
- Enrolment continues...
Conclusions-LMP1/2 data

- Evaluation of T cell products important to perform detailed immune reconstitution analysis and persistence
- Accumulation of LMP-specific T cells at disease sites even when peripheral blood persistence low
- No toxicity – especially when used as adjuvant therapy
- Anti-tumor effects seen (PFS 60% at 2 years)

Acknowledgments

CAGT Laboratory
Malcolm Brenner
Cliona Rooney
Helen Heslop
Ann Leen
Barbara Savoldo
Gianpietro Dotti
Steve Gottschalk
Juan Vera
Adrian Gee
Nabil Ahmed
Carlos Ramos
Carl Allen

Collaborators
EJ Shpall
John Barrett

Cath Lab
Stephanie Ku, Sharon Lam, Russell Cruz, Patrick Hanley, Alana Kennedy-Nasser
Yasmin Hazrat, Mo Baki, Javier El-Bietar, JW Blaney, Gerrit Weber, Francesco Saglio