Hematopoietic Stem Cell Transplantation for Adrenoleukodystrophy

2011 NHLBI Pediatric Workshop

Sept. 14, 2011

Paul Orchard, M.D. Division of Pediatric Blood and Marrow Transplant University of Minnesota

Adrenoleukodystrophy

- Frequency ≈1:20,000 births
- X-linked peroxisomal disorder
- Defect in ABCD1 gene; many described mutations
- Defective metabolism of very long chain fatty acids (VLCFA)
- Affected boys have high plasma VLCFA; establishes the diagnosis

Figure: Dr. S. Kemp, Emma Children's Hospital, Amsterdam, Netherlands

Clinical Characteristics: ALD		
1.	Childhood Cerebral-ALD (C-ALD) – Mean 7.2 yrs; (2.75-10 yrs)	30-35%
2.	Adolescent C-ALD – 11-21 age group; slower progression	4-7%
3.	Adrenomyeloneuropathy (AMN) alone – Spinal cord disease; 40% develop C-ALD	40-46%
4.	Adult C-ALD	2-5%
5.	Ponto-cerebellar disease (adolescent/adult)	1-2%
6.	Addisonian alone	50%
7.	Asymptomatic; incidence decreases with age	Rare > 40yrs

Indication for Transplantation For Adrenoleukodystrophy

Evidence of Active Cerebral ALD

- Characteristic white matter changes on MRI
- Evidence of active inflammation/blood brain barrier disruption (gadolinium enhancement)

Problem #1: Can't Predict Phenotype

HSCT for Cerebral-ALD How Does it "work"?

- Stop cerebral inflammatory
 process with BMT regimen
- However, as gene product is a peroxisomal membrane protein, no "cross-correction" as seen in lysosomal diseases
- Oligodendrocyte responsible for myelination; not provided

• W站时的近时 that donor derived microglia provide "protection" for oligodendrocyte population

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Cerebral-ALD: Determining Clinical Severity Moser/Raymond Scale

Vision impairment/fields cut	
Cortical blindness	2
Swallowing difficulty or other CNS dysfunction	2
Tube feeding	2
Episodes of incontinency	1
Total incontinency	2
Nonfebrile seizures	1
Possible Total	25

Conclusions: Allogeneic Transplantation for ALD

- Cannot yet predict who is at risk for cerebral disease, which is the target group for transplantation
- Important to identify cerebral disease EARLY in the course of disease; done by repeat MRI if known ALD patient
 - If identified early; good outcomes with current transplant approaches
 - If advanced disease; survival & neurologic status post transplant poor with current approaches, but no alternative therapy for these boys
- Future beneficial approaches may include newborn screening, biologic assessments of risk, modification of transplant procedures to decrease risk and prevent deterioration during therapy

Current Obstacles: Cellular Therapy for ALD

- Don't clearly understand the biology of the disease, nor treatment with transplantation
- Clinical/functional, radiographic monitoring not standardized
- Rare disease, limited numbers of patients exist for design of new prospective trials – need cooperative studies
- How to integrate new approaches (gene therapy) as choices
- As early diagnosis critical in achieving acceptable outcomes. Can studies identify who will develop cerebral ALD?
 - Possible prospective trials monitoring evidence of inflammation, oxidative stress, etc. May lead to preventive therapy
 - How to design and pay for a national trial covering years?